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THE STABILITY OF A DRY PATCH ON A WETTED WALL 
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Abstract-A theoretical investigation is described into the flow of a liquid film around a stable dry patch 
on a wetted inclined wall. Observations have suggested the following model. The flow is assumed to be 
undisturbed by the dry patch except in a thin region around its boundary, called the collar, which has some 
features of a boundary layer. This is patched to the main flow of the film by conservation arguments. It 
is possible to calculate the maximum film thickness for which such a configuration is possible, and also the 
dimensions of the collar and the dry patch in these cases. The results are compared with previous 

investigations. 

NOMENCLATURE 

Oxyz, Cartesian coordinates; 
u, v, w, corresponding velocity components; 

P, density of liquid; 

“7 kinematic viscosity of liquid; 

9, gravitation constant; 

h, film thickness; 

I-, surface tension; 

Y, angle of contact; 
a, c, d, A, collar cross-section parameters: 

radius, thickness, width, area; 

u, tangential velocity in collar; 

0, mean value of U over cross-section; 

s, arc length measured along dry-patch 
boundary; 

8, angle between Ox and tangent to dry-patch 

boundary; 

K, curvature of free surface; 

R, radius of curvature of dry-patch boundary; 

&> value of R at apex; 

PY pressure; 

1, length scale; 
k, L, M, N, P, K, dummy constants; 

rl> alh; 
K inclination of plane to vertical; 
H, D, thickness and width of fingers far 

downstream. 

1. INTRODUCTION 

IT IS a familiar observation that when a film of water 
runs down an inclined surface it tends to do so not in 
a more or less uniform sheet but in a number of trickles 
or fingers with dry areas in between, which are often 
in the approximate form of parabolas with vertex 
upwards. This phenomenon is of great importance in 
chemical engineering in any situation where gas and 
liquid are to be brought into contact, such as in 

distillation columns and heat exchangers. Film rupture 

is undesirable because it may lead to reduced efficiency 
and overheating or corrosion of the dry area. One 

would like to estimate, then, the minimum thickness 

at which the film will remain intact and the area of the 
dry patches when they are present. 

This has been the subject of a number of investiga- 
tions and one may cite the work of Ponter et al. [l] 
and Hartley and Murgatroyd [2] (hereafter referred 

to as [l] and [2] respectively). In [I] a good deal of 
literature is considered and some interesting experi- 
ments are reported. The qualitative aspects of the 

situation are as expected. When the film is sufficiently 
thick dry patches do not appear; when it is sufficiently 
thin, stable (i.e. permanent) dry patches appear. In 
between there is a regime in which the film ruptures 
from time to time to form a dry patch which is 
subsequently filled in or swept away. 

In both [l] and [2] simple theoretical models of the 

flow are analysed and compared with experiment, with 
varying success. The object of the present work is to 
present a considerably more detailed theoretical study 

in an attempt to improve our understanding of the 
hydrodynamical processes. 

2. APPROXIMATIONS 

Although in most practical and experimental situa- 
tions the film is flowing along a circular .tube (either 
outside or inside) the present theory will describe flow 
on an inclined (usually vertical) plane. This approxima- 
tion (which is used in all other theoretical attempts) 
will be adequate when the tube radius is large enough 
compared with other lengths; typically the tube radius 
is 2-3 cm and the film thickness is about lo-’ cm. 

We consider the steady flow in the presence of a 
stable dry patch and the configuration is as shown in 
Fig. 1. Cartesian axes Oxyz are fixed with 0 in the plane. 
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The theories presented in I and II were based on the 
assumption that the flow is everywhere parallel to the 
solid boundary, and then (referring to Fig. 2) equating 

the downward momentum flux to the upward force due 
to surface tension along CA leads to 

2 pg2h5 
-p= T(l-cosy) 
15 V2 

when the plane is vertical. (This calculation is carried 
out incorrectly in [2] ; there is an erroneous factor of $ 

in equation (4).) 
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FIG. 1. Sketch of flow round a dry patch (shaded area). 

FIG. 2. Cross-section of 
film through apex A. 

Although heat and mass transfer are supposed to be 
taking place no account of them is taken in this simple 
theory. McPherson [3] investigated some of these 
effects and the conclusion seems to be that their direct 

effects are negligible. (We should point out that 

McPherson deals with a horizontal film which is 

dragged along by a stream of gas flowing over it; this 
force plays the same role as gravity in the present 
theory.) It seems reasonable to assume. then, that 
temperature gradients, evaporation, and so on, will 

enter only parametrically into the problem, that is, they 
will determine the viscosity, surface tension and angle 

of contact, but will not produce forces directly. This 
assumption is implicit in [l] and [2] and will probably 
be adequate unless the temperature gradients are so 
large as to produce turbulence or boiling. 

The aim of the present work is to present criticisms of 

equation (I) of a more fundamental nature and to 
present an improved theory which meets these 
criticisms. First we may notice that in considering the 

force balance along CA no account is taken of gravity 

or viscous drag on the wall; of course these will be 
equal and opposite over much ofthe film, well upstream 
of A, but this cannot be the case near the edge of the 
film where the fluid is slowed down. 

Secondly, it appears from equation (1) that only one 

value of h is possible for each value of 7; and while “J 
may vary somewhat from its static value, it is known 
froni experiments that a stable dry patch can exist for 
all h up to a certain maximum value. 

It has been noticed by several workers that the film 

thickens near the boundary of the dry patch to form a 
collar; this is clearly visible in the photographs in [I] 
and is discussed by McPherson, although he is unable 
to predict its dimensions. This observation provides the 
key to the present theory. It is proposed that well 
away from the dry patch the balance of forces is 
between gravity and viscous drag. When the fluid enters 
the collar the radial balance (i.e. parallel to the plane 

and normal to the dry patch boundary) will be hydro- 
static; the tangential balance is more complicated and 
will be discussed later. The collar thus resembles a 
boundary-layer, in which surface tension forces take 

over from viscous drag. 
The theory given here will be partly empirical in that 

no attempt will be made to predict the shape of the 
collar cross-section; this will be assumed to be an arc 
of a circle making the appropriate angle with the solid 
boundary. It will be possible however to find the radius 
of this circle and also the shape of the dry-patch 
boundary, near the apex A. The two regions, film and 
collar. will be simply patched together using conserva- 
tion of mass and momentum. 

Downstream of the apex the flow will develop into 
fingers (assuming that several dry patches are present) 
and the approximations described above will break 
down as the distinction between the main film and the 
collar becomes blurred. Ultimately the streamlines will 
be straight and this leads to a fairly tractable problem 
which is dealt with in Chapter 5. 
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3. FLOW NEAR THE APEX 

If the film is uniform far upstream and the plate is 
vertical we have the velocity components 

and the tangential component of this is 
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167 u = 2v(ZZ-2hz) 

v=w=o 

and so the volume flux per unit width is (l/3) (gh3/v) 
and the momentum flux per unit width is (2/15) @/v)‘h5. 

Now consider a typical station on the collar near the 
apex (Fig. 3). We shall obtain equations expressing the 

FIG. 3. Sketch of collar and co- 
ordinate system. 

conservation of mass and momentum as fluid enters the 
collar from the film and flows along it. Arc length 
measured tangentially along the collar (i.e. parallel to 
the dry patch boundary) is denoted by s. We assume 
that the radius of the cross-section of the collar, a, 
varies only slowly with s, and that the velocity U in the 
collar is approximately tangential. If 0 is the average 
value of U over the cross-section and A is the cross- 
section area, so that A = a’(y-&sin2y), conservation 
of mass gives 

Au = +y, 

The r.h.s. is the total volume flux entering the collar 
between the apex and the station in question. 

We now turn to the balance of tangential momentum. 
At any point in the fluid in the collar the tangential 
force due to viscosity is proportional to V*U, V2 here 
representing a two-dimensional operator in the cross- 
section plane (rY2/~s2 being assumed small in com- 
parison). The tangential component of gravity is g cos 0. 

The momentum entering the collar between two 
stations a distance ds apart is 

2 g2 - - 
0 15 v 

h’dssin0 

& $ 2h5dssinOcos8. 
0 

Averaging this over the cross-section we find that the 
force produced (which is proportional to the momen- 
tum injected per unit arc length) is proportional to 

Finally we must include in the tangential equation 
of motion the effect of the tangential acceleration pro- 
duced by mass injection. Since fluid is entering the 
collar at each station and we have assumed that the 
cross-section is varying only slowly, it follows that U 
must depend on s and clearly 

E = !_!T!Csin(j. 
as 3vA 

We are thus compelled to account for the non-linear 
inertia terms in the tangential equation of motion. 
Under the present approximations these reduce to the 
single term U(aU/&) and we shall replace this by an 
averaged linear expression 

UC!!? = I!!hssin~U 
as 3vA ’ 

These four terms may now be combined to give the 
tangential momentum equation 

vV2U = -[gcosR+ &~)1~sinOcosO] 

+ ~$sinOU. (4) 

Rewriting this as 

V2U = -MfN’U (44 

we obtain 

0 = $[I -f(Nd)] 

where d = 2a sin y is the collar width and f is the solu- 
tion of a certain canonical boundary value problem 
described in the Appendix. 

The third equation will now be obtained, representing 
the radial (or normal) balance of momentum. Consider 
a point where the free surface meets the solid boundary. 
A balance must be achieved between the force due to 
surface tension, the hydrostatic force due to the weight 
of liquid in the collar, and the radial injection of 
momentum. 

The total curvature K at the point where the free 
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surface meets the solid boundary is given by 

K = ’ sin5 
a R’ 

This is because we can regard the free surface at any 

station as (approximately) the surface swept out by the 

local cross-section moving in a circle of radius R. The 
appropriate formula for K may be found in 
Weatherburn [5]. 

Resolving the weight of liquid in the collar radially 
we obtain 2pgd sin 0. To this must be added a pressure 
p0 which arises from radial momentum injection. 
Considering again a short arc length ds we see that p0 
is given by 

h*sin’(fds (7) 

c being the collar thickness. (Centrifugal forces have 
been neglected.) The equation of radial balance is thus 

The equations (3), (4) and (8) are sufficient when f is 
known. Equations (3) and (5) yield an equation for J’ 

in terms of 0 which may be integrated to give the 
shape of the dry patch boundary. In particular it is 
easy to obtain the radius of curvature at the apex. 
R,, and substitute into (8) with 0 = x/2, thus 

determining u. Before displaying these results it will be 
convenient to transfer to dimensionless variables. We 

introduce a length I defined by 

f-5_ 2 9 2F _ -- .- 0 15 v r (9) 

and 1 is about 35 x 10e2 cm for water at 20°C. We take 

(‘0) 

where k = 2(~-+sin2y)/sinz?/ as indicated in the 

Appendix. Then (3) and (5) give 

y = 3k2sin2y(p-+sin2y)--- 1 +L---SmQ ~0~0 ;:I( $:I . ) ,.,I 
-~ (11) 

4[ 1 + P vi(h*3 sin ())I2 

where the asterisk denotes a dimensionless form and 
the constants L and P are given by 

L, = is _ ..--‘1.- 
15 v2 (Y-$sin2y) 

P = ~k2sin2yL.. 

The general form of (11) is 4’ = F(B), and this together 
with the equation dy/dx = tan 0 enables us to obtain 
the shape of the dry patch boundary. In particular it is 

readily shown that the radius of curvature at the apex 
is F’(7r/2), that is 

Ro= $k2sin2:(~-jsin2;;)$ 

___- ..--._ 
(I + Ph*3’2)2 

(12) 

Away from the apex the distinction between collar 
and film becomes less clear and so the approximations 

of this section will break down; for this reason the 
question of the shape of the dry patch boundary will 
not be taken further. The value of R. does however 
provide some estimate of the size of the dry area. 

Substituting (12) into (7) with iI= n/2 will yield an 
equation to determine a* in terms of h*. Writing 
71 = u*/h* this becomes 

k’sinyjy-+sin2-f) 

1 -cos; 
(~h*Zq’+h*5-l+cos7) 

x(q”+Lh*3,1)$-(1+Ph*3’2)2=O (13) 

where K = 2yy?sin y( 1 -cos 7)/T. The solution of this 
to give 9 in terms of h* is done numerically but certain 

results may be obtained by inspection. We observe that 
when h* --t 0 there is a real root for 9 given by 

$k”siny(~-&sin2y)~3 = I 

but if h*’ > I- cos 7 there is no real root because every 
term in (13) is positive. We thus define a critical value 
of /I*, h,*, say, above which no solution is possible and 
this is the maximum film thickness for which a stable 

dry patch is possible. 
The result h$: = 1 -cos y was obtained in [I] 

essentiafly by guessing that the important terms in (7) 
are T/a and po. and in many cases it turns out that this 

is not far wrong. 
In summary. for each value of h* below the critical 

value, (13) may be solved to give q and hence a* and 
the collar width and thickness, d and c respectively. 
The value of n* thus obtained may be substituted into 

(12) to give Ro. Examples of this are given in the next 

section. 

4. RESUL.TS 

Various quantities of interest are shown graphically 
in Figs. 47. Figure 4 shows the collar thickness 
c* = a*(1 -cos y) and the critical film thickness hr as 
calculated from equation (1) and the present theory, 
against y. The values chosen for T and v are those 
for water-air at 20°C. It will be seen that [l] gives 
results about 10 per cent higher than the present theory 
over most of the range. Figure 5 shows the radius of 
curvature at the apex R. when h* = hr, against y. The 
curvature x0 = R< ’ is also shown and it appears to vary 
approximately linearly with y over much of the range. 

The variation of c* and R* with h* as h* increases 



Stability of a dry patch on a wetted wall 

2.5 c 

1611 

0 / 1 I 1 / I 
20 40 60 60 loo 120 140 160 I80 

Y 

FIG. 4. Graphs of critical film thickness &it and corresponding collar thickness 
c against y. Of the 2 curves for &, the upper represents the solution of 

equation (1) and the lower the solution of (12). 

FIG. 5. Graphs of R. (radius of curvature of dry patch boundary at apex) 
and R; ’ at the critical value of h against y. The left-hand scale refers to Ro, 

the right-hand scale to RPj I. 

towards h:, for given y, is shown in Figs. 6 and 7 and it is 
apparent that they increase rapidly to their critical 

values as h* approaches h:. 
Unfortunately, although a great deal of experimental 

work has been reported, a proper comparison is not 
possible. The most important reason is lack of informa- 
tion about the contact angle. In fact [l] appears to be 
the only work in which the vital role of this angle is 
appreciated and it should be emphasised that it must be 
measured under the appropriate conditions of surface 
roughness, evaporation and so on. The contact angle is 

extremely sensitive to these influences as shown in [l]. 
Furthermore, only the static contact angle has been 
measured and it is known that the actual angle under 
dynamic conditions (such as at A) may differ by 20” or 
more. (Dr. Davies has indicated privately that the 
authors of [l] were well aware of this point but that 
it proved impossible to measure this angle in practice.) 

The reason why the contact angle has not usually 
been measured is probably bound up with the source 
of a further difficulty, namely, that what experimenters 
have reported is invariably the minimum wetting rate, 
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h’ 

FIG. 6. Graphs of collar thickness c against h for various values of y, 
Each curve terminates at the point marked by x , at which h = &it for 

that value of y. 

h* 

FIG. 7. Graphs of R. against h for various values of y. As in Fig. 6, 
x denotes a critical value. 

i.e. the least flow rate at which dry patches never 
appear. What the theory gives is ofcourse the maximum 
flow rate for which dry patches are possible and in 
between is the unsteady transition regime described 
earlier. Since, then, in most measurements the dry 
patches are absent it seems natural to suppose that 
the contact angle is unimportant. 

However, the major conclusion of this paper is that 
the surface tension and contact angle are the vital 
quantities and that errors in measuring them may 
account for most of the discrepancies between theory 
and experiment. The extraordinary sensitivity of the 
contact angle, in particular, to evaporation, absorption 
and so on, and the difficulty of controlling surface 

conditions in practical situations. are unfortunate facts 
which must be faced. 

Finally, the whole flow of an intact film may be 
dynamically unstable. The growth of wavy disturbances 
has been the subject of many investigations, and there 
is also instability of flow down a vertical tube to small 
deviations of the tube from the vertical (Ponter and 
Davies [4]). These instabilities may cause local thinning 
of the film leading to rupture, even though the average 
thickness (which is what is measured, by means of the 
total flow rate) may be above the expected critical 
value. Generally it seems to be almost impossible to 
maintain an intact film on a tube more than about 2 m 
long. In [l] elaborate precautions were taken to ensure 
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that the tube was straight, circular and vertical and that 

the film was put on evenly at the top, but nevertheless 
the results show almost without exception that the film 

broke down on long (120cm) tubes more readily than 
on short (30cm) ones. This suggests that instabilities 
are present but have not had a chance to grow on the 
shorter tubes. We may conclude that it is the results 

from the shorter tubes which are more reliable because 
the actual film thickness is more likely to be close to the 

average. 
I should like to suggest that if further experiments 

are carried out measurements should be taken below 
the critical wetting rate (as well as above it) to compare 
with Figs. 6 and 7, and that close attention should be 
given to the problem of measuring the contact angle 
under dynamic conditions. The boundary-layer 

character of the flow suggested here could be investi- 
gated by introducing dye streaks so as to pass close to 

A. The present theory predicts that most of the fluid 
enters the collar and is not merely swept round it. 

5. FLOW FAR DOWNSTREAM 

Well downstream of the apex of the dry patch the 

fluid will flow straight down the plane in a number of 
fingers and it is interesting to find the shape of the 

cross-section of these fingers in terms of the volume of 
fluid flowing in them. We shall assume here that the 
plane is inclined at an angle t( to the vertical. 

This was studied in [2] where it was proposed that 
the cross-section will be such as to minimise the rate of 

flow of the sum of surface and kinetic energies. One 
certainly has the feeling that something is minimised 
but we shall see that this idea is incorrect. Figure 8 

I 
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FIG. 8. Cross-section of the finger for downstream. 

shows the cross-section of the finger. The streamlines 
are straight and the cross-section is independent of x 
(by assumption) and so the velocity field must take the 
form [u (y, z), O,O]. The equations of motion then reduce 
to 

1 aP vv=u= -gcosu+- 
Pax 

in the x direction, and hydrostatic equilibrium in the 

Y 

FIG. 9. The canonical boundary value problem. 

y and z directions, that is aplay = 0 and 

p = p1 -pgsinuz (15) 

where p1 is the pressure on the plane. There is no 
normal viscous stress on the free surface and so the 
free surface condition is 

p+TK=O on z=4(y). (16) 

Now we observe that K is independent of x and so 
ap/i3x = 0, and (13) may be reduced to 

The boundary conditions on the velocity u are 

u=O on z=O 

au 
an’ 0 on z = 4(y) 

(144 

(17) 

where d/an denotes differentiation along the normal. 

This last condition is that of zero shear stress on the 
free surface. 

It is now possible to see that the problem may be 

divided into two parts. The cross-section may be deter- 
mined from (14) and (15), which may be combined to 

give 

Ti#i’ 
PI -m sin 4 + (1 + 4,2)3,2 = 0 (18) 

the solution of which is the well-known curve called 
the elastica. (The reason that this is possible is that the 
velocity does not occur in the specification of the 
problem to determine @, which is therefore the same 
as if the fluid were at rest.) Once C#J has been deter- 
mined the solution may be inserted into (16) which, 
together with (13a), will determine u. This problem is 
intractable in general because of the complicated nature 
of the function C#A 

Equation (18) has also been studied in connection 
with the sessile drop and one can show without 
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difficulty that 

S. D. R 

T 
max= 2sinx ~ 

( > 

I,‘2 
H 

2 pgsincc 
(19) 

and that D + x- as H + H,,,. In fact an approximate 

formula for D in terms of H can be readily obtained. 

Integrating (17) with respect to 4 from 0 to H gives 

p,H-$pgsinaH’-T(l-cosy) = 0 (20) 

and integrating with respect to y from 0 to D gives 

p,D-pgsinafiHD--Tsiny = 0 (21) 

where fiHD is half the cross-section area, so that /I lies 
between n/4 and I. Putting /I = 1 for simplicity and 
eliminating pr gives 

D= - 
TH sin y 

T( I- cos y) - &pg sin aH2 
(22) 

from which (18) follows. 
It now appears that the curve z = 4(y) minimises the 

sum ofsurface and gravitational potential energies. The 
value H,,, certainly provides an upper bound on the 

film thickness for which dry patches are possible but 
it is too crude in most cases. When the plane is vertical 
the free surface will be an arc of a circle and 
H Inax = x. 

6. CONCLUSIONS 

The main purpose of this work has been to put 
forward a hypothesis concerning the broad structure of 
the flow around a stable dry patch. Calculations have 

been carried out to obtain values of the maximum flow 

rate for which a stable dry patch can exist and the 
results are contained in Fig. 4. The principal conclu- 
sions are: (i) The main hypothesis concerning the flow 

structure can only be tested in detail by comparison 
with experiments below the minimum wetting rate, few 
of which have been reported. The results seem however 
to be reasonable agreement with observation. (ii) In the 

stability of the dry patch a crucial role is played by the 

contact angle, and it is essential that due account should 
be taken, when measuring it, of evaporation, surface 
roughness and so on. Dynamical effects may also be 
important. (iii) The main restrictions on the applica- 
bility of the theory are that the direct mechanical 
effects of heat and mass transfer are small, so that 
boiling and turbulence produced by large temperature 
gradients are not accounted for. (iv) We have considered 
a problem in which the liquid flows downward under 
gravity and the dynamical effects of the external gas 
stream have been ignored as indicated in (iii). However 
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in situations where the liquid is dragged horizontally 
by a gas stream a trivial modification should suffice, 
because the only important change is in the velocity 
profile in the film (equation (2)) and in the correspond- 
ing mass and momentum flux expressions. 

1. 

2. 

3. 

4. 
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APPENDIX 

The boundary value problem mentioned in Section 3 is as 
shown in Fig. 9. We have 

(VZ - I.‘)$ = 0 (A.1) 

in the region between the arc of a circle and the x axis, 

$=l on J=O 

(‘i 
z= 

0 

on the curved boundary where i;/?n denotes differentiation 
alone the normal. Then f(l) is the average value of CL. Clearlv 
when,? is small we havef&.) = 1 + O(,I’). . 

An inspection of the magnitudes in the physical problem 
however indicates that I. is large near the apex. (Typically 
1 2: 50 or more.) The solution as I. + x can be obtained 
by a simple boundary layer argument and we have 

and so 

i-e.“’ 

f -6 

where A is the area 

.3-i sin27 

sin’ i 

We now approximate ,f over the whole range by the 
function 

l+ki. 

f(‘) = (1 +:kI,)’ 

where k is at our disposal. We choose k to give accuracy 
where we most need it, namely when I is large, so that 

k = 2(1 -*sin 2y)/sin2 1. 
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STABILITE DUN RESEAU SEC SUR UNE PAR01 MOUILLEE 

R&urn&On developpe une etude theorique de I’ecoulement dun film liquide amour d’un reseau set 
stable sur une paroi chaude inchnee. Des observations ont suggtre le modele suivant. L’ecoulement est 
suppose non perturbe par le reseau set, except& dans une mince region contigiie, appelee collier, qui 
presente quelques caracttres d’une couche limite. L’ecoulement principal du film est soumis a des 
arguments de conservation, II est possible de calculer I’epaisseur maximale du film pour qu’une con- 
figuration soit possible, de m&me que les dimensions du collier et le reseau sec. dans ces conditions. 

Les rtsultats sont compares B ceux d’etudes anterieures. 

DIE STABILITAT EINES TROCKENEN FLECKS AUF EINER BENETZTEN WAND 

Zusammenfassung-Es wird eine theoretische Untersuchung iiber die Stromung eines Fliissigkeitsfilms 
rings urn einen stabilen trockenen Fleck auf einer benetzten, geneigten Wand beschrieben. Beobachtungen 
lassen das folgende Model1 nahehegend erscheinen: 

Es wird angenommen, daB die Stromung durch den Fleck ungestort sei bis auf ein diinnes Gebiet 
an seinem Rand, Kragen gennant, welches einige Eigenschaften einer Grenzschicht hat. Es besteht eine 
Zuordnung zur Hauptstromung des Films aufgrund von Erhaltungssatzen. Es ist moglich, die maximale 
Filmdicke zu berechnen, fur die eine solche Konfiguration denkbar ist, ebenfalls die Abmessungen des 
Kragens und des trockenen Flecks in diesem Fall. Die Ergbnisse werden mit vorangegangenen 

Untersuchungen verglichen. 

ymoti~moc-rb cyxoro Y~ACTKA HA CMAHMBAEMOIJ CTEHKE 

Amroraumr - TeOpeTWeCKM MCCJenyeTCn 06TeKaHHe yCTOi+itiBOrO CyXOrO yYaCTKa WiLiKOi? WteHKOti 

Ha HaK.lOHttOii CMaqtlBaeMOi? CTeHKe. Ha6ntonennn tT03BOnMnM IlpeLlJlO2GiTb CneflytOLLlytO MOnenb. 

CneilatiO tT~~e~~O,lO~eH!4e, qT0 nOTOK He BO3MyUlaeTC~ CyXMM yVaCTKOM HMrI,e 38 MCK,Tto’,eHMeM 

y3~oR o6nacTt.f oKon ero rpattwubt, Ha3bteaeMoiG 60p0THt4K0~ M o6nanatomefi HeKoTopbtMM 

CBOtiCTBaMM ~Or~~atttlVttOrO CnOll. 3Ta 06JtaCTb FtpMCOeRMHReTCfl K OCHOBHOMy IIOTOKy IT,leHKM IlO 

coo6paiKcHtinM. BblTeKaK)UlMM M3 3aKOHOB COXpaHeHMR. MO~HO NOIlC’lWTaTb MaKCMMaJlbHytO 

TO,llllMt~y tI.lCHKM. ttpt4 KOTOpOi? TaKafl KOH&lrypaW~ MOxeT CyUeCTBOBaTh, a TaK)I(e pa3Mepbt 

BOI)OTHMKB tt CyXOrO yVaCTKa L-tR 3THX me CnyWeB. 3Tt-t pe3ynbTaTbl CpaBHMBatOTC,, C tTOny’,eHHblMM 

pattee. 
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